3.7.15 \(\int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [615]

3.7.15.1 Optimal result
3.7.15.2 Mathematica [A] (verified)
3.7.15.3 Rubi [A] (verified)
3.7.15.4 Maple [B] (verified)
3.7.15.5 Fricas [F]
3.7.15.6 Sympy [F(-1)]
3.7.15.7 Maxima [F]
3.7.15.8 Giac [F]
3.7.15.9 Mupad [F(-1)]

3.7.15.1 Optimal result

Integrand size = 25, antiderivative size = 325 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a^2 d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x)} \]

output
2/5*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+4/5*b*sin(d*x+c 
)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+2/5*(a-b)*(3*a^2+b^2)*cot(d*x+ 
c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/( 
a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/ 
(a-b))^(1/2)/a^2/d-2/5*(a-b)*(3*a-b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c)) 
^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*( 
1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
 
3.7.15.2 Mathematica [A] (verified)

Time = 9.81 (sec) , antiderivative size = 399, normalized size of antiderivative = 1.23 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\frac {8 \cos ^2\left (\frac {1}{2} (c+d x)\right )^{7/2} \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (-2 \left (3 a^3+3 a^2 b+a b^2+b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a \left (3 a^2+4 a b+b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-\left (3 a^2+b^2\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{(1+\cos (c+d x))^{3/2}}+(a+b \cos (c+d x)) \left (5 a^2+b^2+4 a b \cos (c+d x)+\left (3 a^2+b^2\right ) \cos (2 (c+d x))\right ) \tan (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(7/2),x]
 
output
((8*(Cos[(c + d*x)/2]^2)^(7/2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[ 
Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(-2*(3*a^3 + 3*a^2*b + a*b^2 + b^3)*Sqrt[ 
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + C 
os[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a 
*(3*a^2 + 4*a*b + b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*C 
os[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/ 
2]], (-a + b)/(a + b)] - (3*a^2 + b^2)*Cos[c + d*x]*(a + b*Cos[c + d*x])*S 
ec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(1 + Cos[c + d*x])^(3/2) + (a + b*Cos 
[c + d*x])*(5*a^2 + b^2 + 4*a*b*Cos[c + d*x] + (3*a^2 + b^2)*Cos[2*(c + d* 
x)])*Tan[c + d*x])/(5*a*d*Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]])
 
3.7.15.3 Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 3278, 27, 3042, 3534, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3278

\(\displaystyle \frac {2}{5} \int \frac {2 a b \cos ^2(c+d x)+\left (3 a^2+5 b^2\right ) \cos (c+d x)+6 a b}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {2 a b \cos ^2(c+d x)+\left (3 a^2+5 b^2\right ) \cos (c+d x)+6 a b}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {2 a b \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (3 a^2+5 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+6 a b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {1}{5} \left (\frac {2 \int \frac {3 \left (4 b \cos (c+d x) a^2+\left (3 a^2+b^2\right ) a\right )}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {\int \frac {4 b \cos (c+d x) a^2+\left (3 a^2+b^2\right ) a}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {\int \frac {4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+\left (3 a^2+b^2\right ) a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {1}{5} \left (\frac {a \left (3 a^2+b^2\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a (a-b) (3 a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {a \left (3 a^2+b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a (a-b) (3 a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {1}{5} \left (\frac {a \left (3 a^2+b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {1}{5} \left (\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

input
Int[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(7/2),x]
 
output
(2*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ((( 
2*(a - b)*Sqrt[a + b]*(3*a^2 + b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + 
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sq 
rt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/( 
a*d) - (2*(a - b)*(3*a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt 
[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b)) 
]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b) 
])/d)/a + (4*b*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2 
)))/5
 

3.7.15.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3278
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Si 
n[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), 
 x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + 
d*Sin[e + f*x])^(n - 2)*Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) 
+ (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a 
*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1 
] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 
3.7.15.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2103\) vs. \(2(293)=586\).

Time = 13.86 (sec) , antiderivative size = 2104, normalized size of antiderivative = 6.47

method result size
default \(\text {Expression too large to display}\) \(2104\)

input
int((a+cos(d*x+c)*b)^(3/2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
-2/5/d*(-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2 
*cos(d*x+c)^4+4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos 
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2 
)*a^2*b*cos(d*x+c)^4+EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2)) 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b)) 
^(1/2)*a*b^2*cos(d*x+c)^4-6*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b)) 
^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c)) 
/(a+b))^(1/2)*a^2*b*cos(d*x+c)^3-2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b) 
/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos( 
d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3+8*EllipticF(cot(d*x+c)-csc(d*x+c), 
(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/ 
(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^3+2*EllipticF(cot(d*x+c)-csc( 
d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x 
+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3-3*EllipticE(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+ 
cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2+6*EllipticF(c 
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/ 
2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^3-3*Ellipt 
icE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+...
 
3.7.15.5 Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")
 
output
integral((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)
 
3.7.15.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(7/2),x)
 
output
Timed out
 
3.7.15.7 Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")
 
output
integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)
 
3.7.15.8 Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="giac")
 
output
integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)
 
3.7.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \]

input
int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(7/2),x)
 
output
int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(7/2), x)